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Heavy tails versus long-range
dependence in self-similar network traf®c
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Empirical studies of the traf®c in computer networks suggest that network
traf®c exhibits self-similarity and long-range dependence. The ON/OFF
model considered in this paper gives a simple `physical explanation' for
these observed phenomena. The superposition of a large number of ON/
OFF sources, such as workstations in a computer lab, with strictly alter-
nating and heavy-tailed ON- and OFF-periods, can produce a cumulative
workload which converges, in a certain sense, to fractional Brownian
motion. Fractional Brownian motion exhibits both self-similarity and long-
range dependence. However, there are two sequential limits involved in
this limiting procedure, and if they are reversed, the limiting process is
stable LeÂvy motion, which is self-similar but exhibits no long-range
dependence. We study simulations limit regimes and provide conditions
under which either fractional Brownian motion or stable LeÂvy motion
appears as limiting process.

Key Words and Phrases: self-similarity, ON/OFF model, fractional
Brownian motion, stable LeÂvy motion, teletraf®c.

1 Introduction

Computers play a predominant role in the modern society. Networks such as the

World Wide Web (WWW) have made it possible to access vast amounts of

information at the touch of a button. However, as any surfer on the Web will have

experienced, transmission times can be extremely long. In order to improve upon

network performance, the characteristics of network traf®c have been studied. This

has been done in networks such as Ethernet LANs (Local Area Networks) or the

WWW. Recent measurements and theoretical analysis of data traf®c have shown the

presence of three characteristic phenomena:

· heavy tailed distributions

· self-similarity

· long-range dependence (LRD)

(In Section 2.1 we will explain in detail what we mean by those notions.) This
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implies that traditional traf®c models, based on classical queuing theory with

exponential inter-arrival times, are not appropriate for describing high-speed

network traf®c, a conclusion which can be found, for example in FOWLER and

LELAND (1991) and in PAXTON and FLOYD (1995). Empirical evidence on the

existence of heavy tails, self-similarity and LRD in traf®c measurements was

further provided in the studies by LELAND et al. (1993), CROVELLA and BESTAVROS

(1996), CROVELLA et al. (1996) and WILLINGER et al. (1995).

To understand why heavy tails, self-similarity and LRD are present in the traf®c

data, WILLINGER et al. (1995) considered a simple ON/OFF model. In this model,

traf®c is generated by a large number of independent ON/OFF sources such as

workstations in a large computer network. An ON/OFF source transmits data at a

constant rate if it is ON and remains silent if it is OFF. Every individual ON/OFF

source generates an ON/OFF process consisting of alternating ON- and OFF-periods.

The lengths of the ON-periods are identically distributed and so are the lengths of

OFF-periods. Moreover, the sequences of lengths of ON- and OFF-periods are

supposed to be independent. WILLINGER et al. (1995) provide an exploratory

statistical analysis of Ethernet LAN traf®c of individual sources and conclude that

the lengths of the ON- and OFF-periods are heavy-tailed in the sense that the

distributions of those lengths are Pareto-like with tail parameters between 1 and 2;

see Section 2.1. In particular, the lengths of the ON- and OFF-periods have ®nite

means but in®nite variances. This fact is further supported by empirical research in

LELAND et al. (1993) and CROVELLA and BESTAVROS (1996). The latter authors

studied the traf®c on the World Wide Web. They found evidence of Pareto-like tails

in ®le lengths, transfer times and idle times. See also CROVELLA et al. (1996).

HEATH et al. (1998) studied the ON/OFF model at the source level. They

constructed a stationary version of the ON/OFF process of an individual source.

Assuming heavy-tailed (Pareto-like) lengths of ON- and OFF-periods, they showed

that the ON/OFF process of an individual source necessarily exhibits LRD, see again

Section 2.1 for a precise de®nition of this notion.

WILLINGER et al. (1995) studied the superposition of many iid ON/OFF sources.

They focused on the cumulative workload process which is the aggregate network

traf®c through time. Their main result is that the cumulative workload process

(properly normalized) of an increasing number of iid ON/OFF sources converges to

fractional Brownian motion (see Section 2.3) in the sense of convergence of the

®nite±dimensional distributions. Their result involves a double limit: ®rst, the num-

ber of sources goes to in®nity and then they let a time-scaling parameter converge to

in®nity. This order of taking limits is crucial for obtaining fractional Brownian

motion as a limiting process. Indeed, when limits are taken in reversed order, TAQQU

et al. (1997) showed that the limits of the ®nite±dimensional distributions are those

of in®nite variance stable LeÂvy motion (see again Section 2.3). The increment

process of fractional Brownian motion, fractional Gaussian noise, exhibits LRD

re¯ecting the LRD in the original workload process. This is in contrast to stable LeÂvy

motion whose increments are independent: LRD disappears in the limit.
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In both, the results of WILLINGER et al. (1995) and TAQQU et al. (1997), a double

limit is involved and the limit regime is sequential. In practice, the behavior of the

cumulative workload process depends on the relative sizes of the number of sources

and the time-scaling parameter. We study simultaneous limit regimes, in which both

parameters go to in®nity at the same time. We provide conditions on their relative

speeds in order to ensure that the limit process is either stable LeÂvy motion or

fractional Brownian motion.

The paper is organised as follows. In Section 2 we give de®nitions of heavy tails,

self-simlarity and LRD and discuss some of the methods used to observe these

phenomena in network traf®c data. We also de®ne fractional Brownian motion and

stable LeÂvy motion. In Section 3 we give a ®rm de®nition of the ON/OFF model and

provide the necessary assumptions. In Section 4 we present the results of WILLINGER

et al. (1995) and TAQQU et al. (1997). In Section 5 we present our main results,

involving simultaneous limit regimes, which were proved by MIKOSCH and STEGE-

MAN (1999). A preliminary analysis was performed in STEGEMAN (1998). In Section

6 we give a sketch of the proof.

2 Traf®c characteristics

2.1 Heavy tails, self-similarity and long-range dependence

First we introduce the concept of heavy tails. If (an) and (bn) are real sequences, we

use the notation an � bn to denote limn!1 an=bn � 1.

DEFINITION 1. We say that a random variable Z has a heavy right (or left) tail if

P(Z . z) � c1zÿá, or P(Z < ÿz) � c2zÿá, as Z !1, (1)

respectively, where á 2 (0, 2) and c1, c2 are positive constants. A random variable

Z is heavy tailed if it has a heavy left or right tail.

REMARK 1. It is common use to de®ne heavy tails are regularly varying. For ease

of presentation we restrict ourselves to the special case (1).

Notice that if Z is heavy tailed, then Var(Z) � 1. If Z is heavy tailed with tail

parameter á, 1, then also EjZj � 1. An example of a heavy tailed distribution is

the Pareto distribution, which is de®ned by

P(Z . z) � k
k� z

� �á

, z > 0, with k. 0 and á 2 (0, 2):

Other examples of such distributions are in®nite variance stable distributions (see

Section 2.3) and the in®nite variance FreÂchet distributions (see for example

EMBRECHTS et al., 1997).

Next we de®ne self-similarity.
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DEFINITION 2. A real-valued stochastic process (Z(t), t > 0) is self-similar with

parameter H . 0 if for all a . 0,

(aÿH Z(at), t > 0) �d (Z(t), t > 0), (2)

which means that the ®nite-dimensional distributions of the processes in (2) are

identical.

Notice that the distribution of a self-similar process is invariant under rescaling

both in time and space, as implied by (2). The perhaps best known example of a

self-similar process is Brownian motion: recall that a Gaussian, mean-zero process

(B(t)) t>0 is called standard Brownian motion if it has stationary, independent

increments, continuous sample paths with probability 1 and variance Var(B(t)) � t.

Since Cov(B(s), B(t)) � min(s, t) it is not dif®cult to see that Brownian motion is

self-similar with parameter H � 1=2.

Next we de®ne long-range dependence (LRD).

DEFINITION 3. Let (Zn, n > 0) be a real-valued, stationary, ®nite-variance

stochastic process with autocorrelation function r(k), i.e.

r(k) � Cov(Zn, Zn�k)

Var(Zn)
, k � 0, 1, 2, . . .:

Then Z exhibits long-range dependence (LRD) ifX
k

jr(k)j � 1: (3)

Instead of LRD the term long memory is frequently used. In view of (3), a process

has LRD if the autocorrelations are not absolutely summable. If the autocorrela-

tions are absolutely summable the process is said to have short-range dependence

or short-memory. This is true for the most frequently applied class of time series

models, the ARMA processes.

In the literature, LRD is sometimes de®ned by describing the rate at which r(k)

decreases to zero as k !1. Following this approach, a stationary process has LRD

if

r(k) � crkÿâ as k !1, (4)

where cr is a positive constant and â 2 (0, 1). Clearly, (4) implies (3).

An analogous way to de®ne LRD is through the spectral density. The spectral

density of a stationary, ®nite variance process (Zn, n > 0) is de®ned as (see

BROCKWELL and DAVIS, 1991, Section 4.3)

f (ë) � ó 2

2ð

X
k

r(k)eÿikë for ë 2 [ÿð, ð],
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where ó 2 � Var(Zn). Since the autocorrelations are not absolutely summable under

LRD, the spectral density has a singularity at ë � 0. One can show (under some

technical conditions) that (4) is equivalent to

f (ë) � cf ë
âÿ1 as ë! 0, (5)

where cf is a positive constant depending on cr.

LRD in a stochastic process has a substantial impact on the variance of the sample

mean

ZN :� 1

N

XN

j�1

Zj:

If (4) or, equivalently, (5) holds, then as N !1
Var(ZN ) � cv ó

2 Nÿâ, (6)

where â is the same as in (4) and cv is a positive constant depending on â and cr.

For a short memory process, Var(ZN ) would decrease proportionally to Nÿ1,

whereas under LRD, the variance decreases at a slower rate.

According to De®nition 3 only a stationary process can exhibit LRD. Since there

are no reliable statistical tools for testing the stationarity of a real-life time series, the

question arises as to whether slowly decreasing autocorrelations might be the result

of non-stationarities. It turns out that this can indeed be the case. For example,

TEVEROVSKY and TAQQU (1995) include shifting means and slowly declining trends

into their models and show that the sample autocorrelation function of the resulting

non-stationary model behaves like the autocorrelation function of a stationary

process with LRD. Therefore, without additional information on the stationarity of

time series, it is not justi®ed to conclude LRD from the various graphical or statistical

methods available.

The term LRD is used to indicate that the interplay of events that are far apart in

time is not negligible. We use De®nition 3 to de®ne LRD, but, as we have tried to

indicate, there are plenty of other de®nitions available. Several alternatives can be

found in the monograph by BERAN (1994). We mention at this point that the best

known examples of processes with LRD are fractional ARIMA models and fractional

Gaussian noise (see Section 2.3).

2.2 Traf®c data analysis

In this section we discuss some of the statistical methods that are used to detect the

presence of heavy tails, self-similarity and LRD.

CROVELLA et al. (1996) have found evidence of heavy tails in the distributions of

®le lengths and transmission times in their empirical study of the WWW. They use

two graphical methods for estimating the tail parameter á in (1). These methods are

also used by WILLINGER et al. (1995) to ®nd evidence of heavy tails in activity

periods and idle times of individual computers.
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The ®rst method is called the log-log complementary distribution (LLCD) plot. Let

Fn denote the empirical distribution function of n observed ®le lengths and let

Fn � 1ÿ Fn denote the `complementary' distribution, i.e. its right tail. An LLCD

plot shows log(Fn(x)) versus log(x). In the heavy tailed case, log(Fn) should

approximate a straight line with slope ÿá for large values of x. In this way an

estimate for á can be obtained. This method is also used in CROVELLA and

BESTAVROS (1996).

The second method is based on the Hill estimator. Suppose Z1, . . . , Zn are iid

with a heavy tailed distribution function F and tail parameter á. Denote the order

statistics by Zn,n < � � � < Z1,n. The Hill estimator of á uses the k largest order

statistics to give the estimate

á̂k � 1

k

Xk

j�1

log(Zj,n)

0@ 1Aÿ log(Zk,n)

0@ 1Aÿ1

:

Since k � kn !1 and k=n! 0 are necessary conditions for consistency of á̂k ,

the estimator á̂k is plotted against k for a variety of values k which are small

compared to n. The graphical output of this procedure is called the Hill plot. In the

heavy tailed case the estimator stabilizes at a level á̂ for certain values of k. This

level á̂ is taken as an estimate for the tail parameter á. In Figure 2 a Hill plot is

shown for realisations of stable random variables. In practice there are some serious

problems concerning the accuracy of the Hill estimator and related tail-estimation

techniques, see e.g. RESNICK (1997) or EMBRECHTS et al., 1997, Section 6.4.

Next we discuss the detection of self-similarity in the workload data. The workload

data consist of measurements of the number of bytes or packets that arrive on the

network per time unit. A packet consists of a collection of bytes that belong to the

same ®le. If a ®le is sent through the network, it is decomposed into several packets.

Usually, the workload is measured for a couple of hours with a time unit of several

microseconds (1 second contains 106 microseconds). This procedure yields very

large data sets. In Figure 1 packet counts are depicted from measurements on the

Ethernet LAN at Bellcore in August 1989. These traf®c data were also used in

LELAND and WILSON (1991) and LELAND et al. (1993). Traf®c data can be obtained

from http:/www.acm.org/sigcom/ITA.

There are no reliable statistical tests for self-similarity as such, unless one speci®es

a parametric models, estimates its parameters from the data and obtains the self-

similarity parameter from the estimated parameters, possibly via a functional

relationship. In practice one usually depends on a `pictorial proof'. In LELAND et al.

(1993) the workload data are shown on different time scales. The assumtion of self-

similarity is justi®ed on the basis of the observation that there are no dramatic

changes in the relative variability of the data. This is consistent with the de®nition of

self-similarity in De®nition 2. However, we should keep in mind that self-similarity

means that the distribution of the process is invariant under rescaling in time and

298 A. Stegeman

# VVS, 2000



space and not the sample paths. The `pictorial proof' can be considered as a handy

graphical tool, but nothing else.

Finally, we consider the detection of LRD in the workload data. Since an in®nite

sum of autocorrelations is impossible to verify in practice, usually (4) is used to

de®ne LRD. There are several methods to detect the presence of LRD in a time series

and to estimate the parameter â. A detailed description can be found in BERAN

(1994). For a performance analysis of various estimators we refer to TAQQU and

TEVEROVSKY (1995, 1996). Empirical studies of LRD in workload data are given in

Fig. 1. Packet counts of Ethernet LAN traf®c measurements at Bellcore, August 1989.

Fig. 2. The Hill plot with asymptotic 95% con®dence bands for 100 000 simulated á-stable random

variables with tail parameter á � 1:2.
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LELAND et al. (1993) and CROVELLA and BESTAVROS (1996). Here we described three

exploratory statistical methods which are used to detect LRD as suggested in (4)±(6).

The ®rst method uses the sample autocorrelation function r̂(k) and plots log(r̂(k))

against log(k). This is called the log±log correlogram plot. If LRD in the sense of (4)

is present, the points of this plot should be randomly scattered around a straight line

with slope ÿâ for suf®ciently large values of k. A disadvantage of this method is

that, for large k, relatively to the sample size of n, the estimte r̂(k) is unreliable (see

BROCKWELL and DAVIS, 1991, Section 7.2). In Figure 3 the sample autocorrelation

function and the log±log correlogram of the Ethernet packet counts are shown. The

autocorrelation function decreases to zero very slowly, which gives rise to the belief

that LRD is present in the data. Linear regression in the log±log correlogram yields

the estimate â̂ � 0:41 of the parameter â in (4).

The second method focuses on the spectral density. If LRD is present, the spectral

density has a peak at zero. A natural estimate for the spectral density is the

periodogram I(ë) (see BROCKWELL and DAVIS, 1991, Section 10.3). To detect the

presence of LRD in the sense of (5), log(I(ë)) is plotted against log(ë) for frequencies

ë close to zero. This is called the log±log periodogram plog. If the points are

randomly scattered around a straight line with slope between zero and ÿ1, this

indicates that LRD in the sense of (5) might be present. However, if the autocorrela-

tions are not absolutely summable, the periodogram ¯uctuates much more for

frequencies tending to zero, than for short memory processes (see BERAN, 1994,

Theorem 3.8). In Figure 4, a smoothed log periodogram and the corresponding log±

log periodogram of the Ethernet packet counts are shown. Clearly, the periodogram

has a peak at zero. Linear regression in the log±log periodogram yields the estimate

â̂ � 0:38 of the parameter â in (5). The small amount of points for small frequencies

indicates that reliable estimates of â can be expected only for huge sample sizes.

Also, notice that the residuals of a least squares regression in the log±log correlo-

gram or the log±log periodogram are not uncorrelated. This means that the standard

assumptions on least squares regression do not apply.

Fig. 3. The sample autocorrelation function (left) and the log±log correlogram (right) of the Ethernet

packet counts.
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The third method is used to detect LRD in the sense of (6). Suppose we have

workload measurements z1, . . . , zN . The procedure is to plot the variance of the

sample mean zn against n(n < N ) on log±log scales. This is called the variance-time

plot. If, for large n, the points are scattered around a straight line with slope between

zero and ÿ1, an indication of the presence of LRD has been found. The variance of

the sample mean Zn is approximated as follows. The data are split up into blocks of

size m (with m� n). For the kth block we compute the mean value z
(m)
k , with

z
(m)
k � 1

m

Xkm

i�(kÿ1)m�1

zi, k � 1, 2, . . . , [n=m]:

The sample variance of fz (m)
1 , . . . , z

(m)

[n=m]
g is taken as an approximation of the

variance of zn.

2.3 Fractional Brownian motion and stable LeÂvy motion

In this section we de®ne the stochastic processes fractional Brownian motion and

stable LeÂvy motion. They can be obtained as limit processes for the cumulative

workload process in the ON/OFF model, which is described in Section 3. We start

with the de®nition of fractional Brownian motion.

DEFINITION 4. Standard fractional Brownian motion (BH (t), t > 0) is a Gaussian

process with mean E(BH (t)) � 0 and autocovariance function

Cov(BH (s), BH (t)) � 1
2
(s2 H � t2 H ÿ jt ÿ sj2 H ),

where H 2 (0, 1).

We refer to the process (ó0 BH (t), t > 0), with ó0 . 0, as fractional Brownian

motion. Fractional Brownian motion has stationary increments and is self-similar

Fig. 4. A smoothed log periodogram (left) and the corresponding log±log periodogram (right) of the

Ethernet packet counts.
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with parameter H. The parameter H is called the Hurst parameter after the

hydrologist Hurst, who in 1951 found evidence for LRD in a data set of annual

minimal water levels of the River Nile. For H � 1=2 fractional Brownian motion

becomes ordinary Brownian motion and hence, has independent increments. The

increment process (BH (n)ÿ BH (nÿ 1), n � 1, 2, . . .) is called fractional Gaussian

noise and has LRD in the sense of (4) if H 2 (1=2, 1). If H 2 (0, 1=2] then

fractional Gaussian noise has short-range dependence.

Stable LeÂvy motion is a process with á-stable ®nite-dimensional distributions. The

univariate stable distribution is denoted by Sá(ó , â, ì), where á 2 (0, 2] is the index

of stability, ó . 0 is the scale parameter, â 2 [ÿ1, 1] is the skewness parameter and

ì 2 R is the shift parameter. If Z � Sá(ó , â, ì), then its characteristic function is

given by

E eièZ �
exp ÿó ájèjá 1ÿ iâ sign(è)tan

ðá

2

� �� �
� iìè

� �
if á 6� 1,

exp ÿó jèj 1� iâ
2

ð
sign(è)ln jèj

� �
� iìè

� �
if á � 1:

8>>><>>>:
The case á � 2 corresponds to the Gaussian distribution. For á, 2, Z has in®nite

variance.

Stable LeÂvy motion is de®ned as follows.

DEFINITION 5. Stable LeÂvy motion (Ëá,ó,â(t), t > 0) is a process with stationary,

independent increments, cadlag sample paths and marginal distributions

Ëá,ó,â(t) � Sá(ó t1=á, â, 0), where á 2 (0, 2], ó . 0 and â 2 [ÿ1, 1].

REMARK 2. Cadlag is a French acronym (continue aÁ droite, limites aÁ gauche). A

function is cadlag if it is continuous from the right and has left limits.

Stable LeÂvy motion is Brownian motion for á � 2. Stable LeÂvy motion is self-

similar with parameter 1=á.

More properties of fractional Brownian motion and stable LeÂvy motion can be

found in the monograph by SAMORODNITSKY and TAQQU (1994).

In Figure 5 sample paths of fractional Brownian motion and stable LeÂvy motion

are shown. Fractional Brownian motion has continuous and nondifferentiable sample

paths. As H gets closer to 1, the sample paths become smoother. If H 2 (1=2, 1) the

LRD in the increments of the process can cause long up- or downward movements.

This is in contrast to Brownian motion (H � 1=2), whose increments are indepen-

dent. Stable LeÂvy motion with á, 2 has discontinuous sample paths (although the

sample path in Figure 5 looks continuous due to Matlab). Large jumps are possible

since the process has in®nite variance (provided á, 2). The independent increments

cause the rapid up and down ¯uctuations.
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3 The ON/OFF model

Here we present the ON/OFF model for computer network traf®c, which was

introduced by WILLINGER et al. (1995). We commence by considering a single ON/

OFF source (representing one computer).

During an ON-period, the source generates traf®c at a constant rate of 1 byte per

time unit. During an OFF-period, the source remains silent. Let X 1, X 2, . . . be iid

non-negative random variables representing the lengths of ON-periods and

Y1, Y2, . . . be iid non-negative random variables representing the lengths of OFF-

periods. The X - and Y -sequences are supposed to be independent. For any distribu-

tion function F we write F � 1ÿ F for the right tail. By Fon and Foff we denote the

common distributions of ON- and OFF-periods, respectively.

In what follows, we assume that the lengths of ON- and OFF-periods are heavy

tailed, i.e.

Fon(x) � conxÿáon and Foff (x) � coff xÿáoff , as x!1, (7)

where áon, áoff 2 (1, 2) and con, coff are positive constants. Hence, both distribu-

tions Fon and Foff have ®nite means ìon and ìoff but their variances are in®nite.

Notice that the tail parameters áon and áoff may be different, hence the extremes of

the ON- and OFF-periods can differ signi®cantly.

An ON/OFF source generates an ON/OFF process fWt, t > 0g of alternating ON-

and OFF-periods. So Wt � 1 if t is in an ON-period and Wt � 0 if t is in an OFF-

period. The ON/OFF process W is stationary if t runs from ÿ1 to �1. But here t

starts at zero, so some assumptions have to be imposed on the distribution of the 0th

ON/OFF-period in order to make W stationary. HEATH et al. (1998) solved this

problem by considering the renewal sequence generated by the alternating ON- and

OFF-periods. Renewals happen at the beginnings of the ON-periods, the inter-arrival

distribution is Fon � Foff and the mean inter-arrival time ìon � ìoff . In order to make

the renewal sequence stationary (see RESNICK, 1992, p. 224, for a de®nition), a non-

Fig. 5. Sample paths of fractional Brownian motion with H � 0:9 (left) and stable LeÂvy motion with

á � 1:2 (right).
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negative delay random variable D is introduced which is independent of the Xis and

the Yis and has distribution

P(D < x) � 1

ìon � ìoff

�x

0

(1ÿ Fon � Foff (u)) du: (8)

A stationary version of the renewal sequence is then given by

(Sn, n > 0) :� D, D�
Xn

i�1

(X i � Yi), n > 1

 !
: (9)

The ®rst renewal S0 is the starting time of the ®rst ON-period. HEATH et al. (1998)

constructed the delay random variable D as follows. They de®ne four independent

random variables B, X (0)
on , Y

(0)
off and Yoff, independent of the X is and the Yis. B is a

Bernoulli random variable with

P(B � 1) � ìon

ìon � ìoff

,

and

P(X (0)
on < x) � 1

ìon

�x

0

Fon(u) du and P(Y
(0)
off < x) � 1

ìoff

�x

0

Foff (u) du:

The random variable Yoff has distribution Foff . The delay variable D is now de®ned

by

D � B(X (0)
on � Yoff )� (1ÿ B)Y

(0)
off : (10)

HEATH et al. (1998) showed that this D has indeed the distribution in (8). The

interpretation of (10) is as follows. If B � 1 the renewal sequence starts during an

ON-period (of which the remaining lifetime at t � 0 is X (0)
on ), which is followed by

a full OFF-period Yoff . If B � 0 the renewal sequence starts during an OFF-period

of which the remaining lifetime at t � 0 is Y
(0)
off .

The ON/OFF process W is now de®ned as

Wt � B1
[0,X

(0)
on )

(t)�
X1
n�0

1[Sn,Sn�X n�1)(t), t > 0:

The stationarity of the renewal sequence (9) implies strict stationarity of the process

W with mean

EWt � P(Wt � 1) � ìon

ìon � ìoff

:

The main result of HEATH et al. (1998) involves the autocovariance function ã(k)

of W . HEATH et al. (1998) give the precise rate of decay for ã(k), under the

assumptions (7) and áon 6� áoff . De®ne

ámin � min(áon, áoff ):

As k !1
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ã(k) � const kÿ(áminÿ1), (11)

so the ON/OFF process W exhibits LRD in the sense of (4).

So far we have considered the ON/OFF process W of a single source. WILLINGER

et al. (1995) consider a network of M iid sources. Each source generates an ON/OFF

process W
(m)
t . The total traf®c in the network at time t is de®ned by

WM (t) �
XM

m�1

W
(m)
t , t > 0:

We call WM the workload process. Since the sources are iid, (11) yields that the

workload process exhibits LRD in the spirit of (4). The total traf®c until time t is

then given by

W�M (t) �
� t

0

XM

m�1

W (m)
u

 !
du, t > 0: (12)

We call W�M the cumulative workload process. In Figure 6 three ON/OFF

processes, their workload and cumulative workload are shown.

4 Convergence results for the cumulative workload process

In this section we concentrate on limit theorems for the cumulative workload

process, as both M and T go to in®nity. In Section 4.1 we discuss the case in which

®rst M !1 and then T !1. This yields convergence to fractional Brownian

motion. In Section 4.2 we reverse the limits in M and T and obtain stable LeÂvy

motion as the limit process.

4.1 Convergence to fractional Brownian motion

We start with the case when ®rst M !1 and then T !1. The main result of

WILLINGER et al. (1995) states that, in this case, the ®nite-dimensional distributions

of (W�M (Tt), t > 0) converge to those of fractional Brownian motion. De®ne the

process

V(M ,T )(t) :� W�M (Tt)ÿ EW�M (Tt)

T H M1=2
,

where H � (3ÿ ámin)=2.

THEOREM 1. Let H be as above and BH be standard fractional Brownian motion.

Then for any x1, . . . , xn 2 R, t1, . . . , tn > 0 and n > 1

lim
T!1

lim
M!1

P(V(M ,T)(t1) < x1, . . . , V(M ,T )(tn) < xn)

� P(ó0 BH (t1) < x1, . . . , ó0 BH (tn) < xn), (13)

where ó0 is a certain positive constant.
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Usually, convergence in the sense of the ®nite-dimensional distributions involves

only one limit. In this case, however, the process V(M ,T ) depends on two parameters,

which both go to in®nity.

The second limit T !1 is used only to stabilize the variance of the process.

WILLINGER et al. (1995) showed that

Var(W�M (T )) � ó 2
0 MT 3ÿámin , as T !1,

which explains the relation between H and ámin.

Fractional Brownian motion BH is self-similar with parameter H. Since

1 ,ámin , 2, H 2 (1=2, 1) and so the corresponding fractional Gaussian noise

sequence exhibits LRD. This re¯ects the LRD in the workload process. The theorem

gives one possible `physical explanation' of the observed self-similarity and the LRD

in high-speed network traf®c provided one accepts that the limits of M and T are

taken in the proposed order. As we will see in the following sections, for (13) to hold,

it is essential that the limits are performed in the order indicated.

Fig. 6. ON/OFF processes, the workload process and the cumulative workload process in the case

M � 3.
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4.2 Reversed limits: convergence to stable LeÂvy motion

In this section we discuss the convergence of the ®nite-dimensional distributions of

the cumulative workload process, if ®rst T !1 and then M !1. In this case,

the limit process is á-stable LeÂvy motion. The following theorem states that, if ®rst

T !1, the ®nite-dimensional distributions of the cumulative workload process

(properly normalized) converge to those of in®nite variance stable LeÂvy motion.

This result can be found in TAQQU et al. (1997). De®ne the process

~V(M ,T )(t) :� W�m(Tt)ÿ EW�M (Tt)

(MT )1=ámin
:

THEOREM 2. For any x1, . . . , xn 2 R, t1, . . . , tn > 0 and n > 1

lim
M!1

lim
T!1

P( ~V(M ,T)(t1) < x1, . . . , ~V(M ,T )(tn) < xn)

� P(cË(t1) < x1, . . . , cË(tn) < xn), (14)

where Ë :� Ëámin,ó ,â is stable LeÂvy motion, c and ó are certain positive constants

and â 2 [ÿ1, 1].

This result should be compared with Theorem 1: If the limits are reversed and a

different normalization is used, another self-similar process, in®nite variance stable

LeÂvy motion, appears as limit process. In contrast to the fractional Brownian

motion of Theorem 2, one loses the LRD completely: the limit process has

independent increments.

The main reason for the different results of Theorems 1 and 2 is the in®nite

variance of the lengths of the ON- and OFF-periods. Indeed, suppose the variances of

both X and Y are ®nite. Then WILLINGER et al. (1995) show that (with ámin � 2)

(13) yields Brownian motion (H � 1=2) as limiting process. Equivalently, in the

proof of (14) TAQQU et al. (1997) show that (with ámin � 2) the limiting process is 2-

stable LeÂvy motion, which is Brownian motion. Notice that if ámin � 2, the pre-limit

workload process has short-range dependence.

There is no particular (practical of theoretical) reason why one should prefer the

limit regime in (13) to that in (14). In order to better understand the interplay of

the roÃles of the limits of M and T to in®nity, we study the weak limit behavior of the

cumulative workload process for large M and T . In the next section we focus on the

simultaneous limit regimes in which M and T go to in®nity at the same time.

5 Simultaneous limit regimes

In this section we present our main results under the assumption that both

parmeters, M and T, go to in®nity simultaneously. In particular, we assume that

M � MT is some integer-valued function such that
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MT is non-decreasing in T and lim
T!1

MT � 1:

For ease of presentation we usually suppress the dependence of M and T .

Recall the de®nition of the cumulative workload process W�M from (12). The

following theorem gives conditions on M which ensure that the ®nite-dimensional

distributions of W�M have an in®nite variance stable LeÂvy motion as limiting process.

THEOREM 3. Let c, ó and â be as in Theorem 2. If

(MT T )1=ámin � o(T ) as T !1, (15)

then for any x1, . . . , xn 2 R, t1, . . . , tn > 0 and n > 1

lim
T!1

P( ~V(M T ,T )(t1) < x1, . . . , ~V(M T ,T )(tn) < xn)

� P(cË(t1) < x1, . . . , cË(tn) < xn), (16)

where Ë :� Ëámin,ó ,â is stable LeÂvy motion.

Notice that (16) is equivalent to convergence of the ®nite-dimensional distributions

of the process ~V(M T ,T ) to those of stable LeÂvy motion.

THEOREM 4. Let ó0 be as in Theorem 1, H � (3ÿ ámin)=2, and BH be standard

fractional Brownian motion. If

T � o(M
1=2
T T H ) as T !1, (17)

then

[V(M T ,T )(t)] t>0 !d [ó0 BH (t)] t>0, (18)

where !d denotes weak convergence in the space C[0, 1) of continuous functions

on the interval [0, 1) endowed with the sup-norm on compact intervals.

The weak convergence in (18) implies convergence of the ®nite-dimensional

distributions of the process V(M T ,T ) to those of fractional Brownian motion. Notice

that (15) is equivalent to MT � o(T áminÿ1), while (17) requires T áminÿ1 � o(MT ).

The results of Theorems 3 and 4 tell us that it depends on the relative speed of M

with respect to T , which process is obtained as a limit for the cumulative workload.

If M goes to in®nity at a slower rate than T áminÿ1, then stable LeÂvy motion appears,

which has independent increments. If M grows faster than T áminÿ1, then the

limiting process is fractional Brownian motion, of which the increments exhibit

LRD.

An intuitive explanation for the totally different dependence structures in the

limiting processes is as follows. The ON/OFF process of a single source exhibits

LRD. If we add up M iid sources, the workload process still has LRD. The effect of
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T !1 is that the time scale is blown up. Values of t that were close to each other

are far apart as T becomes large.

This destroys the dependence structure within an ON/OFF process. This effect is

slowed down if the adding up ON/OFF processes happens very rapidly, i.e. if M

grows fast. The dependence structure of the workload process remains intact in

Theorem 4 since M is allowed to grow fast. In Theorem 3, however, M is not allowed

to grow fast and the dependence in the workload process vanishes in the limit. See

also Remarks 3 and 4.

Notice that if

MT � const T áminÿ1 as T !1,

then both conditions (15) and (17) are not satis®ed. In this case it is not clear

whether the cumulative workload process converges in some sense at all.

6 Sketch of the proofs of Theorems 3 and 4

Here we give the ideas underlying the proofs of Theorems 3 and 4. We also try to

explain why different limit processes appear under different conditions on M . A

detailed proof can be found in MIKOSCH and STEGEMAN (1999), in which general

regularly varying tails are assumed for Fon and Foff (including slowly varying

functions). See also MIKOSCH et al. (1999).

6.1 The stable LeÂvy motion case

We follow the approach of TAQQU et al. (1997). First, we consider a single ON/OFF

source and focus on the mean corrected cumulative workload process:

Gt �
� t

0

(Wu ÿ EWu) du, t > 0:

We will represent this process as a random sum with remainder term. This

representation will show the basic structure of G.

Notice that

Wt ÿ EWt �
ìoff

ìon � ìoff

�: ron if Wt � 1,

ÿ ìon

ìon � ìoff

�: ÿroff if Wt � 0:

8>><>>:
Recall the de®nition of the underlying renewal sequence (Sn) from (9) and de®ne

the corresponding renewal counting process

Nt :�
X1
n�0

1[0, t](Sn):

Notice that SNtÿ1 < t , SNt
. For k > 1, let Jk be the mean-corrected cumulative

workload in the kth renewal interval [Skÿ1, Sk):
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Jk �
�Sk

Skÿ1

(Wu ÿ EWu) du � ron X k ÿ roff Yk

� ron(X k ÿ EXk)ÿ roff (Yk ÿ EYk):

Notice that the Jks are iid mean-zero random variables.

The random sum representation of Gt depends on whether t > S0 or t , S0.

The case t > S0. Then Gt consists of three parts. The ®rst part is the contribution

of the 0th renewal interval [0, S0), which we denote by R1. The second part is the

contribution of the renewal intervals [Skÿ1, Sk), for k � 1, . . . , Nt, given by

XNt

k�1

Jk :

It remains to subtract the contribution of the interval (t, SNt
]. We denote the

contribution of this interval by R2(t).

The case t , S0. In this case we denote the contribution of the interval [0, t] by

R3(t). The complete expression for Gt is as follows.

LEMMA 1. The mean-corrected cumulative workload process has the following

representation as a random sum with remainder terms:

Gt � R1 �
XNt

k�1

Jk ÿ R2(t)

" #
1[S0,1)(t)� R3(t)1[0,S0)(t): (19)

Next, consider a large number M of iid ON/OFF sources and de®ne for source m

G
(m)
t �

� t

0

(W (m)
u ÿ EW (m)

u ) du, t > 0:

We also adapt the notation of (19) to the mth source. Let á :� ámin and

aT � (MT )1=á. We consider the process

aÿ1
T

XM

m�1

G
(m)
Tt , t > 0

 !
,

for large T . As in (19), we can write

aÿ1
T

XM

m�1

G
(m)
Tt � IT (t)� IIT (t)ÿ IIIT (t)� IVT (t), (20)

where
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IT (t) � aÿ1
T

XM

m�1

[R
(m)
1 1

[S
( m)

0
,1)

(Tt)],

IIT (t) � aÿ1
T

XM

m�1

XN ( m)

Tt

k�1

[J
(m)
k 1

[S
( m)

0
,1)

(Tt)],

IIIT (t) � aÿ1
T

XM

m�1

[R
(m)
2 (Tt)1

[S
( m)

0
,1)

(Tt)],

IVT (t) � aÿ1
T

XM

m�1

[R
(m)
3 (Tt)1

[0,S
( m)

0
)
(Tt)]:

The next result states that the terms IT , IIIT and IVT vanish in the limit.

LEMMA 2. Suppose

aT � o(T ), as T !1:
Then for every t > 0,

IT (t)!P 0 and IIIT (t)!P 0 and IVT (t)!P 0,

as T !1.

Since (see BILLINGSLEY, 1968, Theorem 4.1) ~Xn!d ~X and ~Yn!P 0 together imply

that ~Xn � ~Yn!d ~X , Lemma 2 yields that we only have to consider the ®nite-

dimensional distributions of IIT . According to the next result they converge to

stable LeÂvy motion.

LEMMA 3. Let c, ó and â be as in Theorem 3. Suppose

aT � o(T ), as T !1:
Then for any x1, . . . , xn 2 R, t1, . . . , tn > 0 and n > 1

lim
T!1

P(IIT (t1) < x1, . . . , IIT (tn) < xn) � P(cË(t1) < x1, . . . , cË(tn) < xn),

where Ë :� Ëá,ó,â is the á-stable LeÂvy motion.

Sketch of proof First we establish the convergence of the marginal distributions,

i.e. the random variables IIT (t) for ®xed t > 0, to Sá(có t1=á, â, 0). For ease of

presentation we assume that t � 1. We write

IIT (1) �
XM

m�1

ZT ,m, (21)

where
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ZT ,m :� 1
[S

( m)

0
,1)

(T )aÿ1
T

XN ( m)

T

k�1

J
(m)
k :

PETROV (1975), Theorem 8 in Chapter IV, gives the following necessary and

suf®cient conditions for the sums (21) of rowwise iid random variables to converge

weakly to an á-stable distribution Sá(có , â, 0): as T !1

(A) M P(ZT ,1 . x)! Cá
1� â

2
(có )áxÿá, 8x . 0,

(B) M P(ZT ,1 < ÿx)! Cá
1ÿ â

2
(có )áxÿá, 8x . 0,

(C) lim
E#0

lim sup
T!1

M Var(ZT ,11fjZT ,1j, Eg) � 0,

where Cá is given by

Cá � 1ÿ á

Ã(2ÿ á)cos(ðá=2)
:

(A) and (B) require the application of a large deviations result for heavy tailed

random sums. This boils down to showing that the renewal counting process NT

can be replaced by its mean ìT , i.e. values that are far from the mean are

asymptotically negligible. (C) then follows from (A) and (B), since

Var(ZT ,11fjZT ,1j, Eg) < E(Z2
T ,11fjZT ,1j, Eg)

�
�E2

0

P(ZT ,1 .
���
x
p

) dx�
�E2

0

P(ZT ,1 < ÿ ���
x
p

) dx:

The convergence of the ®nite-dimensional distributions is established by applying

the CrameÂr-Wold device i.e. by showing that any linear combination of the random

variables IIT (ti), for t1 , � � � , tk, converges to the corresponding linear

combination of the stable random variables Ëá,ó,â(ti). h

So far we have shown the convergence of the ®nite-dimensional distributions to

stable LeÂvy motion. A natural thought is to consider the possibility of functional

weak convergence in the path space of cadlag functions D[0, 1). Unfortunately, we

do not have weak convergence under the J1-topology on D (see SKOROKHOD,

1956). KONSTANTOPOULOS and LIN (1998) showed that a sequence of stochastic

processes with continuous sample paths, converging in ®nite-dimensional distribu-

tions to a process with discontinuous sample paths, is not tight under the J1-

topology. However, it might be possible to have weak convergence under a weaker

topology on D, for instance Skorokhod's M1-topology.

REMARK 3. Notice that the independent increments of the limit process arise in a

very natural way. We used the decomposition (20) and asymptotically, we are left

312 A. Stegeman

# VVS, 2000



with IIT , which is a random sum of iid heavy tailed random variables. Basically,

the counting process NT can be replaced by its mean ìT , since values far from the

mean are asymptotically negligible. This means that for large T , IIT behaves like a

sum of iid random variables and hence has independent increments.

6.2 The fractional Brownian motion case

In this section we consider the case when M increases faster than T áÿ1. Let

aT � M1=2T H , where H is as in Theorem 4. As before, á :� ámin. This time

T � o(aT ) as T !1 and the result of Lemma 2 does not hold. Therefore, we have

to consider the process (20) as a whole. The proof of the convergence of the ®nite-

dimensional distributions to fractional Brownian motion is similar to the proof of

Lemma 3. For ®xed t > 0, the cumulative workload is represented as a sum of M

iid random variables. For the convergence of the marginal distributions, we have to

show that as T !1

aÿ1
T

XM

m�1

G
(m)
Tt !

d
N (0, ó 2

0 t3ÿá)�d ó0 BH (t): (22)

Necessary and suf®cient conditions for (22) to hold can be found in PETROV (1995),

Theorem 4.2. The convergence of the ®nite-dimensional distributions is again

established by considering linear combinations. The tightness is proved by applying

BILLINGSLEY (1968), Theorem 12.3.

REMARK 4. Contrary to the convergence to stable LeÂvy motion, the LRD in the

workload process is preserved in the limit. This can be explained using the

decomposition (20). This time we have to consider the whole proces (20), in which

the LRD is still present. In Theorem 4, M is allowed to grow fast compared to T and

the dependence structure of the workload process remains intact (see also Remark 3).
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