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Heavy tails versus long-range
dependence in self-similar network traffic

A. Stegeman™

University of Groningen, Department of Mathematics, P.O. Box 800,
NL-9700 AV Groningen

Empirical studies of the traffic in computer networks suggest that network
traffic exhibits self-similarity and long-range dependence. The ON/OFF
model considered in this paper gives a simple ‘physical explanation’ for
these observed phenomena. The superposition of a large number of ON/
OFF sources, such as workstations in a computer lab, with strictly alter-
nating and heavy-tailed ON- and OFF-periods, can produce a cumulative
workload which converges, in a certain sense, to fractional Brownian
motion. Fractional Brownian motion exhibits both self-similarity and long-
range dependence. However, there are two sequential limits involved in
this limiting procedure, and if they are reversed, the limiting process is
stable Lévy motion, which is self-similar but exhibits no long-range
dependence. We study simulations limit regimes and provide conditions
under which either fractional Brownian motion or stable Lévy motion
appears as limiting process.

Key Words and Phrases: self-similarity, ON/OFF model, fractional
Brownian motion, stable Lévy motion, teletraffic.

1 Introduction

Computers play a predominant role in the modern society. Networks such as the
World Wide Web (WWW) have made it possible to access vast amounts of
information at the touch of a button. However, as any surfer on the Web will have
experienced, transmission times can be extremely long. In order to improve upon
network performance, the characteristics of network traffic have been studied. This
has been done in networks such as Ethernet LANs (Local Area Networks) or the
WWW. Recent measurements and theoretical analysis of data traffic have shown the
presence of three characteristic phenomena:

o heavy tailed distributions
o self-similarity

o Jong-range dependence (LRD)

(In Section 2.1 we will explain in detail what we mean by those notions.) This
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implies that traditional traffic models, based on classical queuing theory with
exponential inter-arrival times, are not appropriate for describing high-speed
network traffic, a conclusion which can be found, for example in FOWLER and
LELAND (1991) and in PAXTON and FLOYD (1995). Empirical evidence on the
existence of heavy tails, self-similarity and LRD in traffic measurements was
further provided in the studies by LELAND et al. (1993), CROVELLA and BESTAVROS
(1996), CROVELLA et al. (1996) and WILLINGER et al. (1995).

To understand why heavy tails, self-similarity and LRD are present in the traffic
data, WILLINGER et al. (1995) considered a simple ON/OFF model. In this model,
traffic is generated by a large number of independent ON/OFF sources such as
workstations in a large computer network. An ON/OFF source transmits data at a
constant rate if it is ON and remains silent if it is OFF. Every individual ON/OFF
source generates an ON/OFF process consisting of alternating ON- and OFF-periods.
The lengths of the ON-periods are identically distributed and so are the lengths of
OFF-periods. Moreover, the sequences of lengths of ON- and OFF-periods are
supposed to be independent. WILLINGER et al. (1995) provide an exploratory
statistical analysis of Ethernet LAN traffic of individual sources and conclude that
the lengths of the ON- and OFF-periods are heavy-tailed in the sense that the
distributions of those lengths are Pareto-like with tail parameters between 1 and 2;
see Section 2.1. In particular, the lengths of the ON- and OFF-periods have finite
means but infinite variances. This fact is further supported by empirical research in
LELAND et al. (1993) and CROVELLA and BESTAVROS (1996). The latter authors
studied the traffic on the World Wide Web. They found evidence of Pareto-like tails
in file lengths, transfer times and idle times. See also CROVELLA et al. (1996).

HEATH et al. (1998) studied the ON/OFF model at the source level. They
constructed a stationary version of the ON/OFF process of an individual source.
Assuming heavy-tailed (Pareto-like) lengths of ON- and OFF-periods, they showed
that the ON/OFF process of an individual source necessarily exhibits LRD, see again
Section 2.1 for a precise definition of this notion.

WILLINGER et al. (1995) studied the superposition of many iid ON/OFF sources.
They focused on the cumulative workload process which is the aggregate network
traffic through time. Their main result is that the cumulative workload process
(properly normalized) of an increasing number of iid ON/OFF sources converges to
fractional Brownian motion (see Section 2.3) in the sense of convergence of the
finite—dimensional distributions. Their result involves a double limit: first, the num-
ber of sources goes to infinity and then they let a time-scaling parameter converge to
infinity. This order of taking limits is crucial for obtaining fractional Brownian
motion as a limiting process. Indeed, when limits are taken in reversed order, TAQQU
et al. (1997) showed that the limits of the finite—dimensional distributions are those
of infinite variance stable Lévy motion (see again Section 2.3). The increment
process of fractional Brownian motion, fractional Gaussian noise, exhibits LRD
reflecting the LRD in the original workload process. This is in contrast to stable Lévy
motion whose increments are independent: LRD disappears in the limit.
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In both, the results of WILLINGER et al. (1995) and TAQQU et al. (1997), a double
limit is involved and the limit regime is sequential. In practice, the behavior of the
cumulative workload process depends on the relative sizes of the number of sources
and the time-scaling parameter. We study simultaneous limit regimes, in which both
parameters go to infinity at the same time. We provide conditions on their relative
speeds in order to ensure that the limit process is either stable Lévy motion or
fractional Brownian motion.

The paper is organised as follows. In Section 2 we give definitions of heavy tails,
self-simlarity and LRD and discuss some of the methods used to observe these
phenomena in network traffic data. We also define fractional Brownian motion and
stable Lévy motion. In Section 3 we give a firm definition of the ON/OFF model and
provide the necessary assumptions. In Section 4 we present the results of WILLINGER
et al. (1995) and TAQQU et al. (1997). In Section 5 we present our main results,
involving simultaneous limit regimes, which were proved by MIKOSCH and STEGE-
MAN (1999). A preliminary analysis was performed in STEGEMAN (1998). In Section
6 we give a sketch of the proof.

2 Traffic characteristics

2.1 Heavy tails, self-similarity and long-range dependence
First we introduce the concept of heavy tails. If (a,) and (b,) are real sequences, we
use the notation a, ~ b, to denote lim,_, a,/b, = 1.

DEFINITION 1. We say that a random variable Z has a heavy right (or left) tail if
P(Z>z)~c1z7% orP(Z<-z)~cz % asZ— oo, (1)

respectively, where a € (0, 2) and cy, c; are positive constants. A random variable
Z is heavy tailed if it has a heavy left or right tail.

REMARK 1. It is common use to define heavy tails are regularly varying. For ease
of presentation we restrict ourselves to the special case (1).

Notice that if Z is heavy tailed, then Var(Z) = oco. If Z is heavy tailed with tail
parameter o < 1, then also E|Z| = co. An example of a heavy tailed distribution is
the Pareto distribution, which is defined by

P(Z>z):< ) z=0, withx>0and a € (0, 2).

K+z
Other examples of such distributions are infinite variance stable distributions (see
Section 2.3) and the infinite variance Fréchet distributions (see for example
EMBRECHTS et al., 1997).

Next we define self-similarity.
© VVS, 2000
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DEFINITION 2. A real-valued stochastic process (Z(t), t = 0) is self-similar with
parameter H >0 if for all a>0,

(@ Zar), t = 0) £ (2(1), t = 0), ()

which means that the finite-dimensional distributions of the processes in (2) are
identical.

Notice that the distribution of a self-similar process is invariant under rescaling
both in time and space, as implied by (2). The perhaps best known example of a
self-similar process is Brownian motion: recall that a Gaussian, mean-zero process
(B(%))s=0 is called standard Brownian motion if it has stationary, independent
increments, continuous sample paths with probability 1 and variance Var(B(?)) = .
Since Cov(B(s), B(f)) = min(s, ¢) it is not difficult to see that Brownian motion is
self-similar with parameter H = 1/2.
Next we define long-range dependence (LRD).

DEFINITION 3. Let (Z,,n=0) be a real-valued, stationary, finite-variance
stochastic process with autocorrelation function p(k), i.e.

COV( Zns Zn+k)

=——""""" k=0,1,2,...
p( ) Var(Zn) b b b b
Then Z exhibits long-range dependence (LRD) if’
> " lp(k)| = oo 3)
X

Instead of LRD the term long memory is frequently used. In view of (3), a process
has LRD if the autocorrelations are not absolutely summable. If the autocorrela-
tions are absolutely summable the process is said to have short-range dependence
or short-memory. This is true for the most frequently applied class of time series
models, the ARMA processes.

In the literature, LRD is sometimes defined by describing the rate at which p(k)
decreases to zero as k — oo. Following this approach, a stationary process has LRD
if

p(k) ~ c, kP as k — oo, 4)

where ¢, is a positive constant and 8 € (0, 1). Clearly, (4) implies (3).

An analogous way to define LRD is through the spectral density. The spectral
density of a stationary, finite variance process (Z,, n = 0) is defined as (see
BROCKWELL and DAVIS, 1991, Section 4.3)

2
) = g—ﬂz p(k)e ¥ for A € [~ 7,
k
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where 0% = Var(Z,). Since the autocorrelations are not absolutely summable under
LRD, the spectral density has a singularity at 1 = 0. One can show (under some
technical conditions) that (4) is equivalent to

f) ~ AP as A — 0, %)

where ¢, is a positive constant depending on c,.
LRD in a stochastic process has a substantial impact on the variance of the sample
mean

_ 1 &
7y ::N;Zj.

If (4) or, equivalently, (5) holds, then as N — oo
Var(Zy) ~ ¢, 0°N~P, (6)

where /3 is the same as in (4) and ¢, is a positive constant depending on 8 and c,,.
For a short memory process, Var(Zy) would decrease proportionally to N~!,
whereas under LRD, the variance decreases at a slower rate.

According to Definition 3 only a stationary process can exhibit LRD. Since there
are no reliable statistical tools for testing the stationarity of a real-life time series, the
question arises as to whether slowly decreasing autocorrelations might be the result
of non-stationarities. It turns out that this can indeed be the case. For example,
TEVEROVSKY and TAQQU (1995) include shifting means and slowly declining trends
into their models and show that the sample autocorrelation function of the resulting
non-stationary model behaves like the autocorrelation function of a stationary
process with LRD. Therefore, without additional information on the stationarity of
time series, it is not justified to conclude LRD from the various graphical or statistical
methods available.

The term LRD is used to indicate that the interplay of events that are far apart in
time is not negligible. We use Definition 3 to define LRD, but, as we have tried to
indicate, there are plenty of other definitions available. Several alternatives can be
found in the monograph by BERAN (1994). We mention at this point that the best
known examples of processes with LRD are fractional ARIMA models and fractional
Gaussian noise (see Section 2.3).

2.2 Traffic data analysis
In this section we discuss some of the statistical methods that are used to detect the
presence of heavy tails, self-similarity and LRD.

CROVELLA et al. (1996) have found evidence of heavy tails in the distributions of
file lengths and transmission times in their empirical study of the WWW. They use
two graphical methods for estimating the tail parameter o in (1). These methods are
also used by WILLINGER et al. (1995) to find evidence of heavy tails in activity
periods and idle times of individual computers.
© VVS, 2000
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The first method is called the log-log complementary distribution (LLCD) plot. Let
F, denote the empirical distribution function of »n observed file lengths and let
F, =1— F, denote the ‘complementary’ distribution, i.e. its right tail. An LLCD
plot shows log(F,(x)) versus log(x). In the heavy tailed case, log(F,) should
approximate a straight line with slope —a for large values of x. In this way an
estimate for a can be obtained. This method is also used in CROVELLA and
BESTAVROS (1996).

The second method is based on the Hill estimator. Suppose Z, ..., Z, are iid
with a heavy tailed distribution function F and tail parameter a. Denote the order
statistics by Z,, < --- < Z;,. The Hill estimator of a uses the k largest order
statistics to give the estimate

-1

) ¢
& = %; log(Z;.n) | — log(Zi.n)

Since k = k, — oo and k/n — 0 are necessary conditions for consistency of dy,
the estimator &y is plotted against k£ for a variety of values k& which are small
compared to n. The graphical output of this procedure is called the Hill plot. In the
heavy tailed case the estimator stabilizes at a level & for certain values of k. This
level @ is taken as an estimate for the tail parameter a. In Figure 2 a Hill plot is
shown for realisations of stable random variables. In practice there are some serious
problems concerning the accuracy of the Hill estimator and related tail-estimation
techniques, see e.g. RESNICK (1997) or EMBRECHTS et al., 1997, Section 6.4.

Next we discuss the detection of self-similarity in the workload data. The workload
data consist of measurements of the number of bytes or packets that arrive on the
network per time unit. A packet consists of a collection of bytes that belong to the
same file. If a file is sent through the network, it is decomposed into several packets.
Usually, the workload is measured for a couple of hours with a time unit of several
microseconds (1 second contains 10° microseconds). This procedure yields very
large data sets. In Figure 1 packet counts are depicted from measurements on the
Ethernet LAN at Bellcore in August 1989. These traffic data were also used in
LELAND and WILSON (1991) and LELAND et al. (1993). Traffic data can be obtained
from http: /www.acm.org/sigcom/ITA.

There are no reliable statistical tests for self-similarity as such, unless one specifies
a parametric models, estimates its parameters from the data and obtains the self-
similarity parameter from the estimated parameters, possibly via a functional
relationship. In practice one usually depends on a ‘pictorial proof’. In LELAND et al.
(1993) the workload data are shown on different time scales. The assumtion of self-
similarity is justified on the basis of the observation that there are no dramatic
changes in the relative variability of the data. This is consistent with the definition of
self-similarity in Definition 2. However, we should keep in mind that self-similarity
means that the distribution of the process is invariant under rescaling in time and
© VVS, 2000
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Fig. 1. Packet counts of Ethernet LAN traffic measurements at Bellcore, August 1989.
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Fig. 2. The Hill plot with asymptotic 95% confidence bands for 100000 simulated a-stable random
variables with tail parameter o = 1.2.

space and not the sample paths. The ‘pictorial proof’ can be considered as a handy
graphical tool, but nothing else.

Finally, we consider the detection of LRD in the workload data. Since an infinite
sum of autocorrelations is impossible to verify in practice, usually (4) is used to
define LRD. There are several methods to detect the presence of LRD in a time series
and to estimate the parameter . A detailed description can be found in BERAN
(1994). For a performance analysis of various estimators we refer to TAQQU and
TEVEROVSKY (1995, 1996). Empirical studies of LRD in workload data are given in
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LELAND et al. (1993) and CROVELLA and BESTAVROS (1996). Here we described three
exploratory statistical methods which are used to detect LRD as suggested in (4)—(6).

The first method uses the sample autocorrelation function p(k) and plots log(p(k))
against log(k). This is called the log—log correlogram plot. If LRD in the sense of (4)
is present, the points of this plot should be randomly scattered around a straight line
with slope —p for sufficiently large values of k. A disadvantage of this method is
that, for large £, relatively to the sample size of n, the estimte p(k) is unreliable (see
BROCKWELL and DAvVIS, 1991, Section 7.2). In Figure 3 the sample autocorrelation
function and the log—log correlogram of the Ethernet packet counts are shown. The
autocorrelation function decreases to zero very slowly, which gives rise to the belief
that LRD is present in the data. Linear regression in the log—log correlogram yields
the estimate B ~ 0.41 of the parameter 3 in (4).

The second method focuses on the spectral density. If LRD is present, the spectral
density has a peak at zero. A natural estimate for the spectral density is the
periodogram I(A) (see BROCKWELL and Davis, 1991, Section 10.3). To detect the
presence of LRD in the sense of (5), log(1(4)) is plotted against log(4) for frequencies
A close to zero. This is called the log—log periodogram plog. If the points are
randomly scattered around a straight line with slope between zero and —1, this
indicates that LRD in the sense of (5) might be present. However, if the autocorrela-
tions are not absolutely summable, the periodogram fluctuates much more for
frequencies tending to zero, than for short memory processes (see BERAN, 1994,
Theorem 3.8). In Figure 4, a smoothed log periodogram and the corresponding log—
log periodogram of the Ethernet packet counts are shown. Clearly, the periodogram
has a peak at zero. Linear regression in the log—log periodogram yields the estimate
B = 0.38 of the parameter f3 in (5). The small amount of points for small frequencies
indicates that reliable estimates of 3 can be expected only for huge sample sizes.
Also, notice that the residuals of a least squares regression in the log—log correlo-
gram or the log—log periodogram are not uncorrelated. This means that the standard
assumptions on least squares regression do not apply.
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log ACF
2.0 1.8
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N YN -J‘lm

0 50 100 150 200 250 300 30 35 40 45
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Fig. 3. The sample autocorrelation function (left) and the log—log correlogram (right) of the Ethernet
packet counts.
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Fig. 4. A smoothed log periodogram (left) and the corresponding log—log periodogram (right) of the
Ethernet packet counts.

The third method is used to detect LRD in the sense of (6). Suppose we have
workload measurements zj, ..., zy. The procedure is to plot the variance of the
sample mean z, against n(n < N) on log—log scales. This is called the variance-time
plot. If, for large n, the points are scattered around a straight line with slope between
zero and —1, an indication of the presence of LRD has been found. The variance of
the sample mean Z, is approximated as follows. The data are split up into blocks of
size m (with m < n). For the kth block we compute the mean value Z(km), with

m_1 ¥
Ekm:EA Z zi, k=1,2,...,[n/m].
i=(k—Tym+1
The sample variance of {Z(lm), ...,EEZ}m]} is taken as an approximation of the

variance of zZ,.

2.3 Fractional Brownian motion and stable Lévy motion

In this section we define the stochastic processes fractional Brownian motion and
stable Lévy motion. They can be obtained as limit processes for the cumulative
workload process in the ON/OFF model, which is described in Section 3. We start
with the definition of fractional Brownian motion.

DEFINITION 4. Standard fractional Brownian motion (Bg(?), t = 0) is a Gaussian
process with mean E(By(t)) = 0 and autocovariance function

Cov(By(s), Bu(1) = (s> + 7 — |1 — s>,
where H € (0, 1).
We refer to the process (ogBy(t), t = 0), with oy >0, as fractional Brownian

motion. Fractional Brownian motion has stationary increments and is self-similar
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with parameter H. The parameter H is called the Hurst parameter after the
hydrologist Hurst, who in 1951 found evidence for LRD in a data set of annual
minimal water levels of the River Nile. For H = 1/2 fractional Brownian motion
becomes ordinary Brownian motion and hence, has independent increments. The
increment process (By(n) — By(n — 1), n =1, 2, ...) is called fractional Gaussian
noise and has LRD in the sense of (4) if H € (1/2,1). If H € (0, 1/2] then
fractional Gaussian noise has short-range dependence.

Stable Lévy motion is a process with a-stable finite-dimensional distributions. The
univariate stable distribution is denoted by S, (o, 5, ), where a € (0, 2] is the index
of stability, 0 > 0 is the scale parameter, S € [—1, 1] is the skewness parameter and
u € R is the shift parameter. If Z ~ S, (0, 3, u), then its characteristic function is
given by

exp{—0“|t9|a<l — iﬁsign(@)tan(yrz(l)) —i—iye} if a #1,

Eel% —

2
exp{—0|t9|<1 +iﬁ; sign(6)1n|9|) +iu9} ifa=1.

The case o = 2 corresponds to the Gaussian distribution. For o <2, Z has infinite
variance.
Stable Lévy motion is defined as follows.

DEFINITION 5. Stable Lévy motion (A, sp(1), t = 0) is a process with stationary,

independent increments, cadlag sample paths and marginal distributions
Ao p(t) ~ Sa(o /%, B, 0), where a € (0,2], 0 >0 and f € [-1, 1].

REMARK 2. Cadlag is a French acronym (continue a droite, limites a gauche). A
function is cadlag if it is continuous from the right and has left limits.

Stable Lévy motion is Brownian motion for a = 2. Stable Lévy motion is self-
similar with parameter 1/a.

More properties of fractional Brownian motion and stable Lévy motion can be
found in the monograph by SAMORODNITSKY and TAQQU (1994).

In Figure 5 sample paths of fractional Brownian motion and stable Lévy motion
are shown. Fractional Brownian motion has continuous and nondifferentiable sample
paths. As H gets closer to 1, the sample paths become smoother. If H € (1/2, 1) the
LRD in the increments of the process can cause long up- or downward movements.
This is in contrast to Brownian motion (H = 1/2), whose increments are indepen-
dent. Stable Lévy motion with a <2 has discontinuous sample paths (although the
sample path in Figure 5 looks continuous due to Matlab). Large jumps are possible
since the process has infinite variance (provided a <2). The independent increments
cause the rapid up and down fluctuations.
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Fig. 5. Sample paths of fractional Brownian motion with H = 0.9 (left) and stable Lévy motion with
a = 1.2 (right).

3 The ON/OFF model

Here we present the ON/OFF model for computer network traffic, which was
introduced by WILLINGER et al. (1995). We commence by considering a single ON/
OFF source (representing one computer).

During an ON-period, the source generates traffic at a constant rate of 1 byte per
time unit. During an OFF-period, the source remains silent. Let X, X5, ... be iid
non-negative random variables representing the lengths of ON-periods and
Y1, Y», ... be iid non-negative random variables representing the lengths of OFF-
periods. The X- and Y-sequences are supposed to be independent. For any distribu-
tion function F we write F = 1 — F for the right tail. By F,, and F,g we denote the
common distributions of ON- and OFF-periods, respectively.

In what follows, we assume that the lengths of ON- and OFF-periods are heavy
tailed, i.e.

Qon

Fon(X) ~ conx™ and  Fog(x) ~ coprx %, as x — 00, 7

where gy, Qofr € (1, 2) and cop, Cofr are positive constants. Hence, both distribu-
tions Fon and For have finite means uon and uorr but their variances are infinite.
Notice that the tail parameters o, and a.g may be different, hence the extremes of
the ON- and OFF-periods can differ significantly.

An ON/OFF source generates an ON/OFF process {W,, t = 0} of alternating ON-
and OFF-periods. So W, = 1 if ¢ is in an ON-period and W, = 0 if ¢ is in an OFF-
period. The ON/OFF process W is stationary if ¢ runs from —oo to +00. But here ¢
starts at zero, so some assumptions have to be imposed on the distribution of the Oth
ON/OFF-period in order to make W stationary. HEATH et al. (1998) solved this
problem by considering the renewal sequence generated by the alternating ON- and
OFF-periods. Renewals happen at the beginnings of the ON-periods, the inter-arrival
distribution is Foy * Fofe and the mean inter-arrival time oy + Uogr. In order to make
the renewal sequence stationary (see RESNICK, 1992, p. 224, for a definition), a non-
© VVS, 2000
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negative delay random variable D is introduced which is independent of the X;s and
the Y;s and has distribution

———{a—mmmmmM ®)
Mon + Mottt Jo

A stationary version of the renewal sequence is then given by

P(D=<x)=

n
(Sp, n=0):= (D, D+ (Xi+Y), n= 1). ©9)
i=1
The first renewal Sy is the starting time of the first ON-period. HEATH et al. (1998)
constructed the delay random variable D as follows. They define four independent
random variables B, X f)?f, Y gof)f and Y., independent of the X;s and the Y;s. B is a
Bernoulli random variable with

,uon

PB=1)=——"—,
Mon + Uott

and

1 [*— 1 ("—
P(XO < x) = J Fon(w)du and P(Y9) <x)= J Fogr(u) du.
Hon Jo Moft Jo
The random variable Y.¢ has distribution Fogr. The delay variable D is now defined
by
D= BXY + Yor) + (1 — B)Y'. (10)

HEATH et al. (1998) showed that this D has indeed the distribution in (8). The
interpretation of (10) is as follows. If B =1 the renewal sequence starts during an
ON-period (of which the remaining lifetime at # = 0 is X)), which is followed by
a full OFF-period Yog. If B = 0 the renewal sequence starts during an OFF-period
of which the remaining lifetime at 7 =0 is Y.

The ON/OFF process W is now defined as

o
Wi = Bl yo (1) + Z lis,.s,+x,,0(0,  t=0.
n=0
The stationarity of the renewal sequence (9) implies strict stationarity of the process
W with mean
EW, = POW, = 1) = —Hon
HUon + Uoff
The main result of HEATH et al. (1998) involves the autocovariance function y(k)
of W. HEATH et al. (1998) give the precise rate of decay for y(k), under the
assumptions (7) and ao, 7# Oofr. Define

Umin = min(aons aoff)~

As k—
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y(k) ~ const k= (“nin=1), (11)

so the ON/OFF process W exhibits LRD in the sense of (4).

So far we have considered the ON/OFF process W of a single source. WILLINGER
et al. (1995) consider a network of M iid sources. Each source generates an ON/OFF
process W(lm). The total traffic in the network at time ¢ is defined by

M
Wu(y=>_w", t=0.
m=1

We call W), the workload process. Since the sources are iid, (11) yields that the
workload process exhibits LRD in the spirit of (4). The total traffic until time ¢ is
then given by

t M

W () = J (Z ij’”) du, +=0. (12)
0\ =1

We call W}'} the cumulative workload process. In Figure 6 three ON/OFF

processes, their workload and cumulative workload are shown.

4 Convergence results for the cumulative workload process

In this section we concentrate on limit theorems for the cumulative workload
process, as both M and T go to infinity. In Section 4.1 we discuss the case in which
first M — oo and then T — oo. This yields convergence to fractional Brownian
motion. In Section 4.2 we reverse the limits in M and T and obtain stable Lévy
motion as the limit process.

4.1 Convergence to fractional Brownian motion

We start with the case when first M — oo and then 7 — co. The main result of
WILLINGER et al. (1995) states that, in this case, the finite-dimensional distributions
of ( W”A}(T t), t = 0) converge to those of fractional Brownian motion. Define the
process

W,(Tt) — EW’S,(T¢)
THM!/2 ’

V(1) =

where H = (3 — amin)/2.

THEOREM 1. Let H be as above and By be standard fractional Brownian motion.

Then for any x1, ..., %, €R, t1, ..., t, =0 and n =1
Tlgf)lc A}ILHOO PVorr(t) < xi, ..., Vaurn(ty) < x,)
= P(0oBu(t)) < x1, ..., 00Bu(t,) < x,), (13)

where 0 is a certain positive constant.
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Fig. 6. ON/OFF processes, the workload process and the cumulative workload process in the case

M =3.

Usually, convergence in the sense of the finite-dimensional distributions involves
only one limit. In this case, however, the process V() 7) depends on two parameters,
which both go to infinity.

The second limit 7 — oo is used only to stabilize the variance of the process.
WILLINGER et al. (1995) showed that

Var(Wi(T)) ~ 03 MT?> “in as T — oo,

which explains the relation between H and ayp,.

Fractional Brownian motion By is self-similar with parameter H. Since
1 <amin <2, He(1/2,1) and so the corresponding fractional Gaussian noise
sequence exhibits LRD. This reflects the LRD in the workload process. The theorem
gives one possible ‘physical explanation’ of the observed self-similarity and the LRD
in high-speed network traffic provided one accepts that the limits of M and T are
taken in the proposed order. As we will see in the following sections, for (13) to hold,
it is essential that the limits are performed in the order indicated.
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4.2 Reversed limits: convergence to stable Lévy motion

In this section we discuss the convergence of the finite-dimensional distributions of
the cumulative workload process, if first 77— oo and then M — oco. In this case,
the limit process is a-stable Lévy motion. The following theorem states that, if first
T — oo, the finite-dimensional distributions of the cumulative workload process
(properly normalized) converge to those of infinite variance stable Lévy motion.
This result can be found in TAQQU et al. (1997). Define the process

W (Tt) — EW'’s,(Tt)
(MT)l/amin

V(1) =

THEOREM 2. For any xi, ..., x, €R t, ..., t, =0 and n=1

lim lim P(Vory(t1) < 15 - o> Vorry(tn) < %)

M—o0 T—o0
= P(cA(t)) = x1, ..., cA(ty) = Xxy), (14)

where A = A, o p is stable Lévy motion, ¢ and o are certain positive constants
and f €[—1, 1].

This result should be compared with Theorem 1: If the limits are reversed and a
different normalization is used, another self-similar process, infinite variance stable
Lévy motion, appears as limit process. In contrast to the fractional Brownian
motion of Theorem 2, one loses the LRD completely: the limit process has
independent increments.

The main reason for the different results of Theorems 1 and 2 is the infinite
variance of the lengths of the ON- and OFF-periods. Indeed, suppose the variances of
both X and Y are finite. Then WILLINGER et al. (1995) show that (with o, = 2)
(13) yields Brownian motion (H = 1/2) as limiting process. Equivalently, in the
proof of (14) TAQQU et al. (1997) show that (with o, = 2) the limiting process is 2-
stable Lévy motion, which is Brownian motion. Notice that if o, = 2, the pre-limit
workload process has short-range dependence.

There is no particular (practical of theoretical) reason why one should prefer the
limit regime in (13) to that in (14). In order to better understand the interplay of
the roles of the limits of M and T to infinity, we study the weak limit behavior of the
cumulative workload process for large M and 7. In the next section we focus on the
simultaneous limit regimes in which M and T go to infinity at the same time.

5 Simultaneous limit regimes

In this section we present our main results under the assumption that both
parmeters, M and 7, go to infinity simultaneously. In particular, we assume that
M = M7 is some integer-valued function such that
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M is non-decreasing in 7 and lim M7y = oco.
T—o0

For ease of presentation we usually suppress the dependence of M and T.

Recall the definition of the cumulative workload process W}‘f,[ from (12). The
following theorem gives conditions on M which ensure that the finite-dimensional
distributions of W*M have an infinite variance stable Lévy motion as limiting process.

THEOREM 3. Let ¢, 0 and f3 be as in Theorem 2. If

(M7T)" /i = o(T) as T — oo, (15)
then for any x1, ..., x, €R, t1, ..., t, =0 and n =1
T]El;lc P(f/(MT,T)(ﬁ) S X, IN/(MT,T)(l‘n) < X)

= P(cA(t) < x1, ..., cA(ty) < x,), (16)

where A = A, o p is stable Lévy motion.

Notice that (16) is equivalent to convergence of the finite-dimensional distributions
of the process V(1) to those of stable Lévy motion.

THEOREM 4. Let 0y be as in Theorem 1, H = (3 — amin)/2, and By be standard
fractional Brownian motion. If

T=oMPT") as T — oo, (17)

then
[Votr.r/(D]i=0 = [00Bu(H)] =0, (18)

d . . .
where — denotes weak convergence in the space C[0, 00) of continuous functions
on the interval [0, c0) endowed with the sup-norm on compact intervals.

The weak convergence in (18) implies convergence of the finite-dimensional
distributions of the process Vs, r) to those of fractional Brownian motion. Notice
that (15) is equivalent to M7 = o(T* 1), while (17) requires T%in~! = o(Mr).
The results of Theorems 3 and 4 tell us that it depends on the relative speed of M
with respect to 7, which process is obtained as a limit for the cumulative workload.
If M goes to infinity at a slower rate than 7%n~!  then stable Lévy motion appears,
which has independent increments. If M grows faster than T%in~!  then the
limiting process is fractional Brownian motion, of which the increments exhibit
LRD.

An intuitive explanation for the totally different dependence structures in the
limiting processes is as follows. The ON/OFF process of a single source exhibits
LRD. If we add up M iid sources, the workload process still has LRD. The effect of
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T — oo is that the time scale is blown up. Values of ¢ that were close to each other
are far apart as 7 becomes large.

This destroys the dependence structure within an ON/OFF process. This effect is
slowed down if the adding up ON/OFF processes happens very rapidly, i.e. if M
grows fast. The dependence structure of the workload process remains intact in
Theorem 4 since M is allowed to grow fast. In Theorem 3, however, M is not allowed
to grow fast and the dependence in the workload process vanishes in the limit. See
also Remarks 3 and 4.

Notice that if

My ~ const T*~ ' as T — oo,

then both conditions (15) and (17) are not satisfied. In this case it is not clear
whether the cumulative workload process converges in some sense at all.

6 Sketch of the proofs of Theorems 3 and 4

Here we give the ideas underlying the proofs of Theorems 3 and 4. We also try to
explain why different limit processes appear under different conditions on M. A
detailed proof can be found in MIKOSCH and STEGEMAN (1999), in which general
regularly varying tails are assumed for F,, and Fog (including slowly varying
functions). See also MIKOSCH et al. (1999).

6.1 The stable Lévy motion case
We follow the approach of TAQQU et al. (1997). First, we consider a single ON/OFF
source and focus on the mean corrected cumulative workload process:

t
G, = J (W, — EW,)du, t=0.
0

We will represent this process as a random sum with remainder term. This
representation will show the basic structure of G.

Notice that
%:: Fon if W, =1,
Wt . EW; _ Hon /f‘Off
om0 = —Voff lf W, = 0
Hon + Uoff

Recall the definition of the underlying renewal sequence (S,) from (9) and define
the corresponding renewal counting process

N, = Z 1[O,t](Sn)-
n=0

Notice that Sy,_; < ¢t<Sy,. For k£ =1, let J; be the mean-corrected cumulative
workload in the kth renewal interval [S;_;, S;):
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Sk
Ji = J Wy — EW,)du = ron Xy — 1ot Y
Sk-1

= ron(Xs — EX}) — rote(Yx — EYy).

Notice that the J;s are iid mean-zero random variables.
The random sum representation of G; depends on whether ¢ = S, or ¢ < Sj.

The case t = Sy. Then G, consists of three parts. The first part is the contribution
of the Oth renewal interval [0, Sj), which we denote by R;. The second part is the
contribution of the renewal intervals [S;_;, Si), for k=1, ..., N, given by

N,
ZJk.
k=1

It remains to subtract the contribution of the interval (¢, Sy,]. We denote the
contribution of this interval by R(?).

The case 7 <<Sj. In this case we denote the contribution of the interval [0, ¢] by
R;(%). The complete expression for G, is as follows.

LEMMA 1. The mean-corrected cumulative workload process has the following
representation as a random sum with remainder terms:

G[:

N;
Ri+> Ji— Rz(l‘)] 115,00) (1) + Ra()110,5)(1)- (19)
pa

Next, consider a large number M of iid ON/OFF sources and define for source m
t
G\ = J w'm — Ew™ydu, t=0.
0

We also adapt the notation of (19) to the mth source. Let a:= ay, and
ar = (MT)"/*. We consider the process

M
( doa. = o),
m=1
for large 7. As in (19), we can write
M
ar' > GE = Ip(0) + Hr(t) — HIr(6) + IV(D), (20)
m=1

where
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M
]T(l‘) = a;l Z[R(lm)l[ssm)’oo)(Tt)]’
m=1

(m)
M Ny

11T(t)—aT‘ZZ[J(’” (s oo (T,

m=1 k=

M
(1) = a7 Z[Rg"”(n)l[Sg,,om)(Tz)],

m=1

M
Vr(t) = a;' Z[Rgm)(Tt)l[o’sgm)(Tt)].

m=1

The next result states that the terms /7, /Il and IV vanish in the limit.

LEMMA 2. Suppose
ar =0o(T), as T — oc.

Then for every t =0,
x50 and 1120 and (Lo,

as T — oc.

Since (see BILCI;INGSLEY 1968, Theorem 4.1) X, X and Y, Lo together imply
that X, +Y,— X, Lemma 2 yields that we only have to consider the finite-
dimensional distributions of /7. According to the next result they converge to
stable Lévy motion.

LEMMA 3. Let ¢, 0 and f be as in Theorem 3. Suppose

ar =0o(T), as T — oc.

Then for any x1, ..., % €R t1, ..., t, =0 and n =1
Yllm P(IIT(tl) sxlv M IIT([I’I) s'xl’l) = P(CA(tl) = xl; L] CA(tl'l) gx!’l):

where A := Ny p is the a-stable Lévy motion.
Sketch of proof First we establish the convergence of the marginal distributions,

i.e. the random variables II7(f) for fixed =0, to S,(co t'/¢, B, 0). For ease of
presentation we assume that ¢ = 1. We write

M
() =>" Zr.m, 21
m=1

where
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N(TM)
— -1 (m)
Zrm = 1igm o (Tay ;E;LIk :

PETROV (1975), Theorem 8 in Chapter IV, gives the following necessary and
sufficient conditions for the sums (21) of rowwise iid random variables to converge
weakly to an a-stable distribution S,(c o, 3, 0): as T — oo

148
2
1-5

(4) M P(Zr, >x) — Cq

(co)*x™, Vx>0,

(B) M P(Zp) < —x) — Ca—— 1 (co)x™®, Vx>0,

(0) lil%llim sup M Var(Zr 11y z,, 1<) =0,
€ T—o0

where C, is given by

B 1—a

- T2 — a)cos(na/2)’

Ca

(4) and (B) require the application of a large deviations result for heavy tailed
random sums. This boils down to showing that the renewal counting process N7
can be replaced by its mean ur, i.e. values that are far from the mean are
asymptotically negligible. (C) then follows from (A4) and (B), since

Var(Zr il z,, <) < E(Z71 11200 <))
2 2

€ €
= J P(Zr, >\/§)dx+J P(Zr) < —/x)dx.
0 0
The convergence of the finite-dimensional distributions is established by applying
the Cramér-Wold device i.e. by showing that any linear combination of the random
variables [I7(¢;), for t; < --- <#, converges to the corresponding linear
combination of the stable random variables A, (1;). O

So far we have shown the convergence of the finite-dimensional distributions to
stable Lévy motion. A natural thought is to consider the possibility of functional
weak convergence in the path space of cadlag functions D[0, co). Unfortunately, we
do not have weak convergence under the Ji-topology on D (see SKOROKHOD,
1956). KONSTANTOPOULOS and LIN (1998) showed that a sequence of stochastic
processes with continuous sample paths, converging in finite-dimensional distribu-
tions to a process with discontinuous sample paths, is not tight under the J;-
topology. However, it might be possible to have weak convergence under a weaker
topology on D, for instance Skorokhod’s M-topology.

REMARK 3. Notice that the independent increments of the limit process arise in a
very natural way. We used the decomposition (20) and asymptotically, we are left
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with [I7, which is a random sum of iid heavy tailed random variables. Basically,
the counting process Ny can be replaced by its mean ur, since values far from the
mean are asymptotically negligible. This means that for large 7, I/ behaves like a
sum of iid random variables and hence has independent increments.

6.2 The fractional Brownian motion case

In this section we consider the case when M increases faster than T%!. Let
ar = MY2TH where H is as in Theorem 4. As before, a := ttmin. This time
T = o(ar) as T — oo and the result of Lemma 2 does not hold. Therefore, we have
to consider the process (20) as a whole. The proof of the convergence of the finite-
dimensional distributions to fractional Brownian motion is similar to the proof of
Lemma 3. For fixed ¢ = 0, the cumulative workload is represented as a sum of M
iid random variables. For the convergence of the marginal distributions, we have to
show that as 7' — oo

M
az' 3" G LN, 635 L oo By (). (22)
m=1

Necessary and sufficient conditions for (22) to hold can be found in PETROV (1995),
Theorem 4.2. The convergence of the finite-dimensional distributions is again
established by considering linear combinations. The tightness is proved by applying
BILLINGSLEY (1968), Theorem 12.3.

REMARK 4. Contrary to the convergence to stable Lévy motion, the LRD in the
workload process is preserved in the limit. This can be explained using the
decomposition (20). This time we have to consider the whole proces (20), in which
the LRD is still present. In Theorem 4, M is allowed to grow fast compared to 7 and
the dependence structure of the workload process remains intact (see also Remark 3).
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